什么决定锂电池正极材料性能

发布日期:2019-02-15
核心提示:经过最近几年的淘汰,当前动力电池市场上,主流的正极材料只剩下锰酸锂,磷酸铁锂和三元锂三种。它们各有所长,又有自己的缺点。随着市场的发展,技术的进步,新材料的诞生,升级和淘汰仍然在进行中
 经过最近几年的淘汰,当前动力电池市场上,主流的正极材料只剩下锰酸锂,磷酸铁锂和三元锂三种。它们各有所长,又有自己的缺点。随着市场的发展,技术的进步,新材料的诞生,升级和淘汰仍然在进行中。
正极材料的安全性,能量密度和功率密度是当前不同车型对锂电池类型做出取舍的基本依据。
1 对正极材料的基本要求
能够得到广泛应用的正极材料,必须满足下列要求。
第一,材料自身电位高,这样才能与负极材料之间形成较大的电位差,带来能量密度高的电芯设计;同时带电离子嵌入脱出对电极电位影响小,则充放电过程,不会有过大的电压波动,不会给系统内的其他电气带来不利影响。
第二,材料含锂量高且锂离子嵌入脱嵌可逆。这是高容量的前提。有些正极材料,理论容量很高,但是有一半的锂离子,第一次嵌入以后就失去了活性。这样的材料,是无法投入商用的。
第三,锂离子扩散系数大,锂离子在材料内部的移动更迅速,嵌入和脱嵌的能力强。是影响电芯内阻的因素,也是影响功率特性的因素。
第四,材料比表面积大,有大量的嵌锂位置。表面积大,锂离子的嵌入通道相对较短,则嵌入和脱嵌更容易。通道浅的同时,嵌锂位置还要充足。
第五,与电解液的相容性和热稳定性好,这点是出于安全性考虑。正极材料与电解液不容易发生反应,以及在较高温度下依然结构稳定并且仍然不易与电解液反应。这样的材质,不会为电芯额外的热积累提供热量,可以减少电芯进入自生热阶段的概率。
第六,材料易得,且加工性能好。成本低,材料容易加工成电极,且电极结构稳定,是材料得到推广应用的有利条件。
2 什么决定了正极材料的安全性
首先,电芯设计中正极材料用量远远大于负极材料的容量,会提高热失控风险。一般的正极材料,锂离子含量都会大于负极材料离子容量,目的是提高电池的功率特性和循环性。但过多的锂离子存储于正极结构中,当外部保护电路失灵,电池发生过充时,容易引发事故。过充,负极材料结构中已经充满了锂离子,再没有位置容纳更多。但正极中多余的锂离子仍然会在外加电压的驱使下,向负极聚集。造成大量锂离子在负极表面沉积,形成锂单质结晶。活泼的锂单质遇到高温会剧烈反应;或者单质量过大,则会刺穿隔膜,造成内短路,给电池带来燃爆风险。
其次,材料的热稳定温度越高,说明材料的氧化能力越弱,材料越安全,如下面表格所示,自上而下,越来越安全。正极材料长期浸泡在电解液中,表面的保护膜并不能像负极一样,起到很好的保护作用。因此,确保正极材料与电解液不发生反应的因素主要依靠正极材料自身的热稳定性和与电解液的相容性。
3 正极材料对锂电池性能的影响
电芯能量密度
每种正极材料都有其理论能量密度,选择了一种正极材料,就选择了电芯能量密度的上限。正极材料的用量设计和加工制作过程中的振实密度也对电芯成品的能量密度产生影响。
电芯功率密度
不同的正极材料种类,决定了电池充放电功率的大体范围。材料的一些细节,作为辅助因素,也会对功率特性造成影响。比如,正极材料的晶体结构稳定性,颗粒尺寸,掺杂原子,碳包覆工艺,材料的制备方法等。以上因素最终都是通过影响正极材料容纳锂离子的能力和脱嵌嵌入通道的通畅性来影响锂电池的功率密度。
电芯循环寿命
影响电芯循环寿命的因素很多,与正极材料相关的,主要有正极材料活性物质在循环使用中的损耗,以及充放电过程中,材料结构的崩坏引发的正极容纳锂离子能力的衰减。而正极材料中的杂质成分,比如单质铁和三价铁,都会与电解液相互作用,产生不良副反应,或者造成内部微短路。
4 三种主流正极材料重要特性
4.1 锰酸锂
锰酸锂,作为使用历史比较长的一种锂电池材料,其安全性高,尤其抗过充能力强,是一大突出优点。由于锰酸锂自身结构稳定性好,在电芯设计时,正极材料的用量不必超越负极太多。这样,使得整个体系中的活性锂离子的数量不多,在负极充满以后,不会有太多的锂离子存于正极。即使出现了过充情形,也不会出现大量锂离子在负极沉积形成结晶的状况。因而,锰酸锂的耐过充能力在常用材料中是最好的。
另外,材料价格低廉,并且对生产工艺要求相对不高,是比较早取得广泛应用的正极材料。
但它也存在着明显的缺陷。尖晶石锰酸锂的高温性能不佳。氧缺陷的存在,使得电芯在高电压阶段容易出现容量衰减,同时,在高温下进行循环使用,也会造成类似的容量衰减。原因出在引发歧化效应的三价锰离子身上。防止高温衰减的方式主要集中在减少三价锰这个点上。
锰酸锂,受限于其高温性能,一般不会用在大功率或者环境温度高的场合,比如高速乘用车、插电混动等就很少选用锰酸锂作为动力。但对于电动大巴,市内物流车等,锰酸锂完全可以胜任。
4.2 磷酸铁锂
磷酸铁锂的优点主要体现在安全性和循环寿命上。主要的决定因素来自于磷酸铁锂的橄榄石结构。这样的结构,一方面导致磷酸铁锂较低的离子扩散能力,另一方面也使它具备了较好的高温稳定性,和良好的循环性能。
磷酸铁锂的缺点也比较明显,能量密度低,一致性差以及低温性能不佳。
能量密度低是材料自身的化学性质决定的,一个磷酸铁锂大分子只能对应容纳一个锂离子。
一致性,尤其是批次稳定性差,除了与生产管理水平有关,还与其自身的化学性质有关。磷酸铁锂是各种锂电池正极材料中比较难于制备的一种。这种化学反应一致性和均匀性的高难度,同时又带来了另一个问题,磷酸铁锂材料中的铁单质和铁离子杂质始终存在,给电池带来了失效隐患。
磷酸铁锂电池,由于其安全性高,虽然能量密度部分的影响了它的使用范围,但仍然是当前我国电动汽车的主要动力锂电池品种。尤其涉及到大量人员生命安全的公交车,国家政策强制要求使用磷酸铁锂电池。
4.3 三元锂
三元锂正极材料,综合了LiCoO2、LiNiO2和LiMnO2三中材料的优点,在同一只电芯内部形成协同效应,兼顾了材料结构的稳定性、活性和较低成本三个要求,是三种主要正极材料中能量密度最高的一种。其低温效果也明显的好于磷酸铁锂电池。
三种元素中,Ni的含量越高,则电芯的能量密度越高,同时,电芯的安全性越低。在实际应用中,三种材料在电芯中的比例关系,随着时间的推移一直在发生变动。人们对能量密度的追求越来越高,因而Ni 的占比也越来越高。
三元材料被提及最多的缺点就是安全性,发生热失控的过程中,其副反应的产物中包含大量气体,使得事故的危险性和可蔓延的能力大大提高。其次,三元材料的循环寿命也是一个瓶颈,目前还达不到磷酸铁锂的水平;最后,由于三元材料特殊的微观结构,使得它不适合高压力压实的操作,因而通俗的提高能量密度的加工方式对于它不适用。
三元材料市场份额正在逐渐扩张,主要动力来自于对汽车续航里程的追求。想要赶上甚至超越燃油车的续航,电动汽车必须在有限的空间内装上尽量多的电量,这就使得能量密度变得尤其重要。而去年国家出台的补贴政策,也是出于激励高能量密度电芯研发的目的,对能量密度设置了门槛,进不来的就没有补贴。从整车厂到pack厂再到电芯厂商,每个环节都必须顺应提高产品能量密度的大趋势,于是三元锂电池得到越来越多的应用。电池本身安全性能的改进和系统监控处理事故能力的提高,也会推进三元锂电池市场扩张的脚步
参考
1 张忠东,锂离子电池正极材料LiMnO_2的研究进展
2 祝宏帅,磷酸体系应用于失效磷酸铁锂电池正极材料回收的研究
3 李海明,LiFePO_4正极材料高倍率性能的研究进展
4 伊廷锋,动力锂离子电池正极材料的研究评述
5 丁玲,锂离子动力电池正极材料发展综述
6 贺本林,锂离子电池的新研究

 
[ 频道新闻搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 违规举报 ]  [ 关闭窗口 ]

 


网站首页 | 关于我们 | 联系方式 | 使用协议 | 版权隐私 | 网站地图 | 排名推广 | 广告服务 | 网站留言 | RSS订阅 | 沪ICP备16055099号-3

第一锂电网 版权所有 © 2016-2018 咨询热线:021-6117 0511  邮箱:heli@heliexpo.com.cn 在线沟通:

本网中文域名:第一锂电网.中国本站网络实名:第一锂电网-中国最专业的锂电池行业信息网站